
REVERSE 

ENGINEERING –

CLASS 0X02

Cristian Rusu

THE STRUCTURE OF ELF FILES



LAST TIME

• Assembly crash course

• compiler tricks

• lab session on assembly primer

.



TODAY

• assembly in context

• the structure of binary files

• study of the ELF binaries

• PE for next week

.



FROM SOURCE CODE TO EXECUTION

https://slideplayer.com/slide/4695781/

today, we focus 

here



• ELF/SO

• PE/DLL

• WASM

• machine code (assembly translated to CPU readable

instructions) is only part of the executable

• all of them have some particular structure we need to

understand to in order to execute the binary (ABI)

.

BINARY FILES



• Executable and Linkable Format (ELF)

• Header

• Content

• Segments

• Sections

• Instructions/Data

• relatively recently introduced, from 1999 (standard from ’80)

• standard for the Linux OS

• binary executables

• libraries

• etc.

.

ELF BINARY



• structure of ELF binaries

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

ELF BINARY

linker

loader

Linker: places pointers to sections from the binary, not relevant at execution

Loader: places pointers to segments from the binary, used at execution



ELF BINARY

https://www.ics.uci.edu/~aburtsev/238P/hw/hw3-elf/hw3-elf.html

.text: machine code

.rodata: readonly data

.data: initialized data

.bss: uninitialized data

.init: init before main()

.plt: Procedure Linking Table

.got: Global Offset Table

.interp: “interpretor”



• describes program headers

...

.ELF...
.

READELF SECTIONS

our binary is called a2.out



• descrie program headers

.

READELF SECTIONS



• descrie program headers

...

.ELF...
.

READELF SECTIONS



• descrie program headers

.ELF...
.

READELF SECTIONS



• describes the header

.ELF...
.

READELF HEADER



• describes the header

.ELF...
.

READELF HEADER



• describes the header

.ELF...
.

READELF HEADER



Handmade Linux x86 executables, https://www.youtube.com/watch?v=XH6jDiKxod8
https://dacvs.neocities.org/1exit

ELF BY HAND

ELF header + machine code for EXIT program

https://www.youtube.com/watch?v=XH6jDiKxod8


.

AN EXERCISE

where is the header entry for the .text section?



• readelf –S a2.out

• start of section header (StOSH): 4894416 bytes (sau 0x4AAED0)

• index of section .text: 14

• size of section headers (SiOSH): 64 bytes

• header for .text starts at:

• StOSH + 14 x SiOSH = 4895312 = 0x4AB250

• there is a structure there which described the properties

• https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h

• struct is elf32_shdr or elf64_shdr

.

AN EXERCISE

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h


• syscall for execution

• EXEC

• reads the header of the binary

• all LOAD directive are executed

• execution resumes at entry point address (_start and then main())

https://man7.org/linux/man-pages/man3/exec.3.html

EXECUTING A STATIC BINARY



• simbols are references (to functions and variable) in binaries

• nm a2.out

• in gdb when you do „break main”, main here is a symbol

• function name is there in the file, but not essential to execution

• remove the symbols by „strippping” the binary

• stripping symbols

• debug and RE are much more difficult

• binaries with smaller size

• static linking

• libraries symbols are included in the binary at link time

• dynamic linking

• links to symbols are added by linker and the loader resolves the links

• resolving symbols at runtime

gcc test.c -o test -static

STATIC OR DYNAMIC BINARY



• dynamic linking

• for example: libc.so

• done dynamically by linker

• Machine code is in a shared memory location

• when do you compute symbol addresses? binding

• when binary is executed immediate binding

• when symbol is used for the first time lazy binding

• shared libraries

• lib + name + -major + .minor + so

• libc-2.31.so

• lib + name + .so + major

• libc.so.6

.

STATIC OR DYNAMIC BINARY



• for these reasons, multiple running times are affected

• compile time

• one time

• codul este absolut (absolute code)

• load time

• each time we execute the binary

• relocatable code

• some addresses are computed when loading the binary

• execute time

• affected by lazy binding

.

STATIC OR DYNAMIC BINARY



• an issue that can create confusion

• libraries can be of two types:

• static

• library is added at compile time

• dynamic/shared

• library is linked when executed

• no need to recompile

• is placed in shared memory

• Position Independent Code (Position Independent Execution)

• Global Offset Table

.

STATIC OR DYNAMIC BINARY



• PIE vs. NO PIE

.

STATIC OR DYNAMIC BINARY



• PIE vs. NO PIE

.

BINARE STATICE ȘI DINAMICE

NO PIE PIE



WHAT WE DID TODAY

• ELF binaries

• readelf

• objdump

• nm

• static and dynamic binaries

.



NEXT TIME ...

• Windows binaries

• Focus on dissasembly

• IDA

.



• In-depth: ELF - The Extensible & Linkable Format, 

https://www.youtube.com/watch?v=nC1U1LJQL8o

• Handmade Linux x86 executables, 

https://www.youtube.com/watch?v=XH6jDiKxod8

• Creating and Linking Static Libraries on Linux with gcc, 

https://www.youtube.com/watch?v=t5TfYRRHG04

• Creating and Linking Shared Libraries on Linux with gcc, 

https://www.youtube.com/watch?v=mUbWcxSb4fw

• Performance matters, https://www.youtube.com/watch?v=r-

TLSBdHe1A

.

REFERENCES

https://www.youtube.com/watch?v=nC1U1LJQL8o
https://www.youtube.com/watch?v=XH6jDiKxod8
https://www.youtube.com/watch?v=t5TfYRRHG04
https://www.youtube.com/watch?v=mUbWcxSb4fw
https://www.youtube.com/watch?v=r-TLSBdHe1A
https://www.youtube.com/watch?v=r-TLSBdHe1A


.


	Slide 1: Reverse Engineering – Class 0x02 
	Slide 2: Last time
	Slide 3: today
	Slide 4: From source code to execution
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Elf by hand
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: What we did today
	Slide 27: Next time ...
	Slide 28: references
	Slide 29

